0=x^2+1506x+729

Simple and best practice solution for 0=x^2+1506x+729 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=x^2+1506x+729 equation:



0=x^2+1506x+729
We move all terms to the left:
0-(x^2+1506x+729)=0
We add all the numbers together, and all the variables
-(x^2+1506x+729)=0
We get rid of parentheses
-x^2-1506x-729=0
We add all the numbers together, and all the variables
-1x^2-1506x-729=0
a = -1; b = -1506; c = -729;
Δ = b2-4ac
Δ = -15062-4·(-1)·(-729)
Δ = 2265120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2265120}=\sqrt{17424*130}=\sqrt{17424}*\sqrt{130}=132\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1506)-132\sqrt{130}}{2*-1}=\frac{1506-132\sqrt{130}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1506)+132\sqrt{130}}{2*-1}=\frac{1506+132\sqrt{130}}{-2} $

See similar equations:

| 26=y/3+17 | | 26=y/3=17 | | u/5-14=20 | | 7-(m-4)=-3+2(2m+1) | | x+2x+3x-126=180 | | 10+6x=5x+10 | | 1000=2^x | | 1.6e=3 | | 31/6=90/54+x | | 31=5x+3x-1 | | (3/4)d+4=(1/4)d+18 | | 34x+95=42x+27 | | 5k-2=7k-16 | | 5·(a+7)=31 | | 2x-16=-2x-2 | | 12x-15=6-3 | | 6+-9w=-21 | | X^2+9(y+2)^2=36 | | 42x+1=52 | | 14a=2.8 | | 9=12k | | X=5t+25 | | .4x=194 | | 13x+7*9=1584 | | -3+4y=25 | | (2x+4)/4=3x-4 | | 13.8-(-1-9.7x)=2.6+13.3x | | 805-h=536 | | 12x+11x=308 | | 19=152/h | | t/20+218=231 | | k/23-3=2 |

Equations solver categories